Flight Manual

for the aircraft

RF 5 B - Sperber

Data Sheet No.: L-695
Serial number: 51060
Year of construction:
Registration: N-99809
Edition: 15-6-74 (replacing 28-11-72)

Translation of the German Flight Manual

This manual shall be kept on board the aircraft
1.1. Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General</td>
<td></td>
</tr>
<tr>
<td>1.1 Contents</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Revisions</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Photograph</td>
<td>4</td>
</tr>
<tr>
<td>1.4 3 - View - Drawing</td>
<td>5</td>
</tr>
</tbody>
</table>

2. Operating Limitations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Basis of Certification</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Speed Limits</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Engine Limits</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Crew</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Weight</td>
<td>8</td>
</tr>
<tr>
<td>2.6 C.G. Flight Limits</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Manoeuvres</td>
<td>10</td>
</tr>
<tr>
<td>2.8 Operating</td>
<td>11</td>
</tr>
</tbody>
</table>

3. Operating Procedures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Normal Procedures</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Emergency Procedures</td>
<td>19</td>
</tr>
</tbody>
</table>

4. Performance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>20</td>
</tr>
</tbody>
</table>

Appendix:

1: Weight and Balance
2: Loading Charts
3: Take-off Distances
4: Variable-pitch propeller HO - V 62 R
1.2 Revisions

<table>
<thead>
<tr>
<th>No.</th>
<th>Page</th>
<th>Contents of revision</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
</table>

Name: Küppers
Edition: 15 - 6 - 1974
1.3 Photograph
2. Operating Limitations

2.1 Basis of Certification

The RF 5 B - SPERBER is certified on the basis of:

Category: Normal Powered Glider, Self launching Aerobatics and Cloud Flying not allowed.

2.2 Speed Limits (IAS)

<table>
<thead>
<tr>
<th></th>
<th>km/h</th>
<th>mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{NE} - never exceed speed</td>
<td>225</td>
<td>140</td>
</tr>
<tr>
<td>V_{A} - Manoeuvring speed</td>
<td>165</td>
<td>103</td>
</tr>
<tr>
<td>V_{FE} - max. spoiler extended speed</td>
<td>225</td>
<td>140</td>
</tr>
<tr>
<td>V_{LE} - max. landing gear extended speed</td>
<td>225</td>
<td>140</td>
</tr>
<tr>
<td>V_{LO} - max. landing gear operating speed</td>
<td>130</td>
<td>81</td>
</tr>
<tr>
<td>V_{SO} - stalling speed spoiler extended</td>
<td>72</td>
<td>45</td>
</tr>
<tr>
<td>V_{S1} - stalling speed spoiler retracted</td>
<td>68</td>
<td>42</td>
</tr>
</tbody>
</table>

Markings on airspeed indicator

- **Red line** (max. speed) 225 km/h 140 mph
- **Yellow arc** (caution range) 165...225 km/h 103...140 mph
- **Green arc** (normal operating range) 75...165 km/h 47...103 mph
- **White arc** (spoiler extended range) 85...225 km/h 53...140 mph
2.3 Engine Limits

Engine: SPORTAVIA - Limbach SL 1700 E

Engine rpm

max. rpm	3600 rpm	
caution range	yellow arc	3200...3600 rpm
normal operating range	green arc	700...3200 rpm

Propeller:
Hoffmann HO 11 - 145 B 80 L (fixed-pitch)
run up 2800 ± 100 rpm

or
Hoffmann HO - V 62 R (variable pitch)
run up 2900 ± 100 rpm

Fuel: 100 L aviation fuel, content max. 38 l (8.4 Imp. Gall)

Oil pressure:
operating range (green arc, limited by red lines) 1,0 ... 4,0 kp/cm²

Oil temperature:

max. oil temperature	120° C
normal operating range	50...120° C
min. oil temperature	50° C

Oil specification:

<table>
<thead>
<tr>
<th>Oil</th>
<th>Air temperature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motoroil of well-known trademarks, e.g. Shell - BP - Esso etc.</td>
<td>more than 20° C</td>
<td>SAE 40</td>
</tr>
<tr>
<td></td>
<td>0° C to 20° C</td>
<td>SAE 20 W/50 Multigrade</td>
</tr>
<tr>
<td></td>
<td>below 0° C</td>
<td>SAE 10 W/40 Multigrade</td>
</tr>
</tbody>
</table>

Oil content:

min. 1,5 l (0.33 Imp. Gall.), max. 2,5 l (0.55 Imp. Gall).
2.4 Crew
crew 2 persons
min. crew 1 person, indispensable minimum of weight 55 kp (121 lbs)

Important:
For single crew operating the pilot must occupy the front seat. Automatic parachute lines to be fixed at left harness bracket.

2.5 Weight
max. permissible T.O. weight 680 kp (1500 lbs)
empty weight (standard equipment) about 475 kp (1050 lbs)
payload about 205 kp (450 lbs)
Payload consists of fuel (max. 28 kp = 62 lbs), baggage (max. 5 kp = 11 lbs), and crew

2.6 C.G. Flight Limits
Aircraft position: upper stringer of fuselage (cockpit frame) horizontal
Datum: 200 cm (6.6 ft) in front of leading edge of wing section, 29 cm (0.95 ft) from centre line of the aircraft (side wall)
max. forward c.g.: 233.5 cm (7.66 ft) aft datum
max. aft c.g.: 253.7 cm (8.32 ft) aft datum

Loading
Incorrect loading may spoil flying qualities and performance and cause dangerous manoeuvres. The pilot should pay special regard to correct loading.
The empty weight and its c.g. position shows little difference in serial production, but can differ more with additional equipment (radio, navigation aids, oxygen etc.)
In order to obtain the correct c.g. in flight one should know each item's weight and its distance to datum. Multiplying item weight by its distance to datum the moment is found. Summary of moments divided by the weight results in the c.g. position of the loading in question.

In order to simplify this calculation one can use the loading charts in Appendix 2.
The following example shows how to proceed:

1. Take empty weight and its moment from weight and balance sheet in Appendix 1

 example: empty weight 473.6 kp
 its moment 1137.5 mkp

2. Take from loading charts 1 and 2 (Appendix 2) for each part of the payload the moment concerned:

 example:

<table>
<thead>
<tr>
<th></th>
<th>Weights</th>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel max. (38 l x 0,72 kp/l)</td>
<td>27,4 kp</td>
<td>37,5 mkp</td>
</tr>
<tr>
<td>front pilot</td>
<td>75,0 kp</td>
<td>171,0 mkp</td>
</tr>
<tr>
<td>front parachute</td>
<td>7,0 kp</td>
<td>17,5 mkp</td>
</tr>
<tr>
<td>aft pilot</td>
<td>80,0 kp</td>
<td>264,8 mkp</td>
</tr>
<tr>
<td>aft parachute</td>
<td>7,0 kp</td>
<td>25,0 mkp</td>
</tr>
<tr>
<td>baggage</td>
<td>4,0 kp</td>
<td>16,1 mkp</td>
</tr>
<tr>
<td></td>
<td>200,4 kp</td>
<td>531,9 mkp</td>
</tr>
</tbody>
</table>

3. Add the partial loads and moments to the empty weight and its moment and you have total weight and its moment.

 With these figures consult chart 3 (Appendix 2) and you will see, if you are within the permissible range or not. In the case of the total weight moment being out of the permissible range the payload distribution must be changed or ballast (e.g. sand- or lead cushion) must be used. When total weight moment is outside the forward limit you should put ballast into the aft seat or into the baggage compartment. When total weight moment is outside the aft limit you should put ballast into the front seat or remove baggage from its compartment.

 In any case with the new partial load the check must be done as before, in order to ensure you are within the permissible range of moment, which means within the permissible c.g. range. Be careful not to exceed the weight limits (max. T.O. weight, max. baggage).

 Our example results in:

<table>
<thead>
<tr>
<th></th>
<th>Weights</th>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>partial loads</td>
<td>200,4 kp</td>
<td>531,9 mkp</td>
</tr>
<tr>
<td>empty weight</td>
<td>473,6 kp</td>
<td>1137,6 mkp</td>
</tr>
<tr>
<td></td>
<td>674,0 ko</td>
<td>1669,4 mkp</td>
</tr>
</tbody>
</table>
Checking in chart 3 you can see that you are within the permissible range for the total weight moment. Because of the fuel consumption the c.g. is moving backward while the engine is running. Therefore you should do the above check once again leaving the fuel weight and moment away. If you are within the permissible range of moment again, you are sure not to leave the permissible c.g. range in flight.

<table>
<thead>
<tr>
<th>Our example</th>
<th>Weights</th>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>partial loads</td>
<td>200.4 kp</td>
<td>531.9 mkp</td>
</tr>
<tr>
<td>minus fuel</td>
<td>27.4 kp</td>
<td>37.5 mkp</td>
</tr>
<tr>
<td>empty weight</td>
<td>173.0 kp</td>
<td>494.4 mkip</td>
</tr>
<tr>
<td></td>
<td>473.6 kp</td>
<td>1137.5 mkip</td>
</tr>
<tr>
<td></td>
<td>646.6 kp</td>
<td>1631.9 mkip</td>
</tr>
</tbody>
</table>

Checking in chart 3 you can see that the payload and its distribution is o.k.

2.7 Manoeuvres

2.7.1 Gliding Flight (engine stopped, spoiler retracted)

1. Stalling straight ahead
 - Stalling speed 68 km/h (42 mph)
 - Warning by buffeting of the stabilizer at the speed of 75 km/h (47 mph), controls getting weak.
 - Generally stall is followed by nose dropping
 - Recovery is effected by pushing forward on the stick
 - One can pilot the "Sperber" up to the stalling speed
 - The "Sperber" will not spin easily
 - The loss of height will be less than 30 m (100 ft)

2. Stalling in 30° banked turns
 - Stalling speed 75 km/h (47 mph)
 - The aircraft rolls toward level flight when stall occurs
 - At stalling speed with a bank angle of 30° the aircraft can be brought back to level flight with normal manoeuvres.

2.7.2 Power Flight (engine idling, landing gear down, spoiler extended)

 - Stalling speed 75 km/h (47 mph)
 - Warning by buffeting of the stabilizer at the speed of 80-85 km/h (50 - 53 mph)
 - The buffeting increases as the stall is approached.
 - Generally stall is followed by nose dropping
 - Recovery is effected by pushing forward on the stick
 - One can pilot the "Sperber" up to the stalling speed
 - The "Sperber" will not spin easily.
2. Stalling in sloping with an angle of 30°

- Stalling speed 80 km/h (50 mph)
- Further stalling characteristics as in gliding flight

It is difficult to make the SPERBER spin at mid or forward C.G. 's. When spinning, the SPERBER recovers by itself after one turn.

At aft C.G. 's the SPERBER can be made to spin more readily. When spin recover action is taken, the SPERBER recovers in less than a half turn.

2.8 Operating

The aircraft may be operated for VFR - flights in daylight with following minimum equipment:

- 2 airspeed indicators
- 2 altimeters
- 1 rpm indicator
- 1 oil pressure indicator
- 1 oil temperature indicator
- 1 fuel storage indicator
- 2 safety harnesses (4-point-type)
- 2 back cushions

Flights under IFR - and/or icing conditions are not permitted.

Aerobatics and Cloud Flying is not allowed.

Selflaunching Powered Glider.
10. Remove cowling, check oil level with tail-wheel on the ground.
 min. 1,5 l (0.33 Imp. Gall)
 max. 2,5 l (0.55 Imp. Gall)
 Upper level is the mark, the lowest level is 1 mm above the end of dipstick.
 Check engine suspension, spark-plugs and ignition harness. Inspect the alternator-belt, exhaust with regard to rents.

11. Check propeller and spinner for cracks, nicks and security.

12. as 6.
13. as 5.
14. as 4.
15. as 3.
16. Inspect the static source for foreign particles.
17. Check elevator and rudder for freedom of movement and security.
18. Check tail wheel and tail wheel springs.
19. as 16.

For extensive checks see Maintenance Manual!

3.1.2 Before Starting Engine

1. Canopy closed and locked
2. Sitting position arranged (cushion, parachute)
3. Safety belts adjusted and locked
4. Brake ON
5. Check all controls for operation
6. Spoiler checked and locked
7. Fuel cock ON
8. Radio OFF

3.1.3 Starting Engine

1. In summer conditions:
 1. Main fuse and master switch ON
 2. Throttle 2 cm (3/4 inch) open
 3. Ignition ON (check aft panel "ON" also)
 4. Pull starter and release immediately, when the engine fires.
 5. Inspect oil pressure. If no pressure indication in 30 sec., shut engine down and determine trouble.
3. Operating Procedures

3.1 Normal Procedures

3.1.1 Ground Check

1. Unlock and open canopy

2. Check: Ignition switch OFF, Master switch OFF, Throttle closed, Fuel cock closed

3. Fold out the outer part of the wings and lock them. Check the locking device, apply the wing fairing and secure it.

4. Check the aileron for play and freedom of movement. Check the securing.

5. Check the surface with regard to damage and rents.

6. Check outrigger wheels

7. Inspect pitot opening for foreign particles.

8. Check the main landing gear, shock-absorber, air-pressure, skid marks, abrasion, parking brake, undercarriage doors.

9. Check the fuel, the vent-hole must show into the flight direction, inspect the fuel storage indicator for freedom of movement.
II. In winter conditions:

(Temperature less than $8^\circ C \approx 46.5^\circ F$)
in addition to all items of I: Pull choke before starting engine

III. Restarting Engine in Flight after a longer Gliding

1. Switch variable-pitch propeller into take-off position again
2. Main fuse and master switch ON
3. Throttle 1/3 open
4. Choke ON
5. Ignition ON
6. Pull starter and release immediately, when the engine fires
7. Inspect oil pressure
8. Choke OFF
9. Warming up at 2200...2500 rpm until oil temperature is min. $50^\circ C (122^\circ F)$

3.1.4 Engine Run-Up

1. 1200 - 1500 rpm
2. Oil temperature min. $50^\circ C (122^\circ F)$
3. Full throttle check with brake on, minimum rpm's 2700 or 2800 according to prop, engine is ready for take-off, when it will take full throttle without hesitating or faltering
4. In the winter the choke is pulled until the engine will run without faltering without the choke. Warming up not longer than five minutes. It is only necessary that it will take full throttle without hesitating. After 5 min. ground run the oil temperature will increase insignificantly only.

3.1.5 Taxying

1. Release brake by turning handgrip horizontal and pushing forward
2. Open throttle slowly
3. If the SPERBER will not move at part throttle, apply full rudder left and right. Once moving use throttle as required for taxiing.
4. Taxi slowly and follow a zigzag course for a better observation of the taxiway (especially on grassfield)
5. Keep clear of obstacles
6. Avoid quick sharp turns.
3.1.6 Before Take-off

1. Canopy in front and in the rear closed and locked.
2. Controls fully moveable and free in correct sense.
3. Spoiler locked.
4. Trim adjusted.
5. Flight instruments set.

3.1.7 Take-off

I. Usual Take-off on a grass runway

1. Open throttle gently.
2. Keep direction with small deflections of rudder. The rudder and the tail wheel are connected by springs.
3. Keep the wings horizontal, but avoid overloading the outriggers, otherwise there is too great a moment on the z-axis, which has to be countered by the rudder.
4. To unload the tailwheel push gently the stick forward and then ease it back during the acceleration.
5. Take off at 75 km/h (47 mph) in about a "Three pointer" attitude (tail wheel height about 5 - 10 cm).

II. Take-off at cross-wind (max. 15 km/h ≈ 8 kts)

1. Open throttle gently.
2. Hold the tail wheel on the ground and ease the stick back slightly, until the rudder is effective.
3. Keep the wings horizontal, but avoid overloading the outriggers otherwise there is too great a moment on the z-axis, which has to be countered by the rudder.
4. Hold the direction with corrections by the rudder.
5. When the rudder is effective hold the elevator in a normal position until take off at 75 km/h (47 mph)
3.1.8 Climb

1. After take-off the SPERBER will accelerate soon to 90 km/h (56 mph)
2. During the climb the throttle is fully open.
3. Climb at
 a) normal 100 km/h (62 mph)
 b) at higher outside temperatures 110 - 120 km/h (68-75 mph)
 c) at low temperatures 90 - 100 km/h (56 - 62 mph)
4. Set trim tab
5. Retract gear at 50 m (150 ft) altitude
 a) unlock safety lock by pressing the small button and pull back the lever.
 b) Pull back gear lever and push down into retracted position. In retracted position the gear lever is just above the seat.
 c) When the gear lever is in the retracted position the gear device locks itself and the safety lock springs forward into the locked position.
 d) Check the safety lock locked and green light out.

3.1.9 Cruising

1. Power setting 2500 - 3200 rpm
2. Avoid more than 3200 rpm due of the noise-level
3. Check engine instruments from time to time
4. For variable-pitch propeller see instructions in App. 4

3.1.10 Stopping the engine in flight

1. Reduce speed to 100 km/h (62 mph)
2. Fly about 2 min. at 2200 - 2500 rpm until the oil temperature starts to fall.
3. Move throttle into idling position.
4. Ignition OFF, master switch remains ON.
5. Reduce speed to 80 km/h (50 mph) until the prop will stop.
6. Open the throttle so far, that the gear warning horn will stop.
7. If the prop stops vertical pull the starter to turn it to horizontal.
8. Switch variable-pitch propeller into feathered position.
3.1.11 Gliding

1. Best glide ratio at 98 km/h (61 mph) is 1 : 26, sinking speed 1.05 m/s (206 ft/min).

2. Minimum sinking speed
 (a) two people 0.95 m/s (198 ft/min) at 80 km/h (50 mph)
 (b) one person 0.89 m/s (175 ft/min) at 75 km/h (46.5 mph)

3. Circling at 85 - 100 km/h (53 - 62 mph)

4. Trim as necessary.

3.1.12 Descent

I. Gliding

1. Extend gear at a speed less than 130 km/h (81 mph).
 (a) Unlock safety lock by pressing the small button and pull lever back.
 (b) Push gear lever forward until it locks. If you can’t reach to the front position push the gear lever with the right foot.
 (c) Locking lever must be gone forward and locked.
 (d) Green lamp lights when gear is extended and locked.

2. Use spoilers if necessary.

3. Speed 120 km/h (75 mph)

II. Powered Flight

1. Extend gear at a speed less than 130 km/h (81 mph)

2. Use spoiler if necessary.

3. Speed 120 - 150 km/h (75 - 93 mph)

4. Not less than 2500 rpm

5. Increase power from time to time to warm up the engine.
3.1.13 **Approach**

Remark: With powered gliders usually one should approach and land with running engine to permit a baulked landing and overshoot if necessary (an aircraft on the runway, gliders on approach, etc.)

If one approaches for exercise or precision landing, one should fly the whole approach with ignition ON. Then one can restart with one single action.

1. **Optimal approach speed**
 - In smooth air 90 km/h (50 mph) spoilers retracted
 - 100 km/h (62 mph) spoilers extended
 - In rough air 10 km/h (6 mph) faster

2. Engine idling
3. Variable-pitch propeller in take-off position
4. Set the trim tab
5. Use spoiler as necessary and hold them.
6. Gear warning (yellow lamp and horn) operated, when with gear up spoiler are extended or throttle fully reduced.

3.1.14 **Landing**

1. Landing is of the usual "three pointer" kind below 80 km/h (50 mph)
2. Extend spoiler completely after touch-down and hold the lever
3. Hold the control stick right back after touch-down
4. With little correction by the rudder hold the direction
5. Hold the wings horizontal
6. If necessary use the parking brake.

3.1.15 **Stop engine**

1. Throttle setting 1200 - 1500 rpm for about one minute.
2. Throttle closed
3. Radio OFF
4. Magneto switch OFF.
5. When engine stopped master-switch OFF
6. Fuel cock OFF (pulled)
3.2 Emergency Procedures

3.2.1 Engine failure during take-off

- runway length sufficient:
 fuel cock OFF
 ignition OFF
 spoiler extended
 brake operate
 stick full backward

- runway length too short:
 same procedure, eventually retract landing gear or apply ground loop to avoid obstacles.

3.2.2 Engine failure after take-off

 fuel cock OFF
 ignition OFF
 make a glider landing

3.2.3 Engine failure in flight

 same procedure as 3.2.2

3.2.4 In-flight engine fire

 cabin heat OFF
 fuel cock OFF
 throttle full power, to burn the fuel in the carburettor
 ignition OFF, after engine has stopped
 landing gear When extended, to be retracted immediately. Select a suitable field for a direct forced landing with landing gear in the up-position. Side slip maneuvers may be used, as necessary to direct flames away from cabin area.

3.2.5 Landing gear extension failure

 Gear operation is mechanical, therefore there is little chance of failure, except by mishandling (e.g. trying to extend gear without unlocking and thus damaging the control lever). In such a case unlock the locking lever and apply positive "g", if necessary several times, until the gear is heard to engage down and the green lamp lights. Stop engine before landing.
3.2.6 Field landing

Generally (except on very bad ground), landing gear and spoiler are to be extended.

On very bad ground, rough or marshy, keep landing gear retracted and make a very gentle landing.

If there is any doubt about the ground conditions extend the gear, but be prepared to retract the gear immediately – even just before touch down, when ground looks bad, and "belly" on.

On water keep gear retracted. Touch-down in nearly stalled condition, stick right back.

Experience shows that the aircraft suffers little damage from a belly landing when engine has been stopped prior to the landing and propellor positioned horizontal.

3.2.7 Emergency bail out

Both canopies can be jettisoned for an easier exit by parachute. Jettison by pushing down the emergency handle and opening the canopy lock, lift the canopy and push it back.

4. Performance

The performance given below is based on T.O. weight of 680 kg (1500 lbs), no wind and dry grass runway.

4.1 Take off distance

Sea-level, temperature + 15° C (see Appendix 3)

distance of ground run 195 m (640 ft)
distance to 15 m (50 ft) obstacle 497 m (1630 ft)
take-off speed 75 km/h (47 mph)
speed at passing 15 m (50 ft) obstacle 100 km/h (62 mph).

4.2 Landing distance

Sea-level, temperature + 15° C

distance of ground run 204 m (669 ft)
distance from passing 15 m (50 ft) obstacle 363 m (1190 ft)
approach speed 90 km/h (56 mph)
4.3 Climbing speed

sea level, temperature +15°C
rate of climb (gear and spoiler retracted) 3 m/s (591 ft/min)
optimum airspeed 90 km/h (56 mph)
with variable-pitch propeller in take-off position
rate of climb is 3.5 m/s (687 ft/min) at airspeed of 95 km/h (59 mph)

4.4 Climbing speed (balked landing)

sea level, temperature +15°C
rate of climb, (gear extended, spoiler retracted) 2.2 m/s (434 ft/min)
optimum airspeed 100 km/h (62 mph)

4.5 Stall

stalling speed (gear and spoiler retracted) 68 km/h (42 mph)
stalling speed (gear and spoiler extended) 72 km/h (45 mph)

4.6 Operating range

At cruising speed 160 km/h (100 mph) and 1500 m (5000 ft) altitude the operating range is 420 km (260 st. M) without reserve.

4.7 Fuel consumption

4.7.1 with fixed-pitch propeller
at 1500 m (5000 ft) altitude there is a fuel consumption of

<table>
<thead>
<tr>
<th>speed</th>
<th>rpm</th>
<th>consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 km/h</td>
<td>3200</td>
<td>13 l/h (2.86 Imp. Gall/h)</td>
</tr>
<tr>
<td>140 km/h</td>
<td>2800</td>
<td>11 l/h (2.42 Imp. Gall/h)</td>
</tr>
</tbody>
</table>

4.7.2 with variable-pitch propeller
at 1500 m (5000 ft) altitude there is a fuel consumption of

<table>
<thead>
<tr>
<th>speed</th>
<th>rpm</th>
<th>consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 km/h</td>
<td>3200</td>
<td>15 l/h (3.30 Imp. Gall/h)</td>
</tr>
<tr>
<td>150 km/h</td>
<td>2800</td>
<td>13 l/h (2.86 Imp. Gall/h)</td>
</tr>
</tbody>
</table>
APPENDIX 1:

WEIGHT and BALANCE

Date: 3-18-76

Aircraft position: upper stringer of fuselage (cockpit frame) horizontal (B1)

Datum (BE): 2,00 m (6.56 ft) in front of leading edge of wing section (Bp), 0,29 m (0.95 ft) from centre line of the aircraft (side wall)

Aircraft condition: ready to fly, including oil, standard equipment without/with 1 fuel

Equipment following list of 3-18-76

Permissible payload: 1973 kp

Empty weight C.G.:

<table>
<thead>
<tr>
<th></th>
<th>gross weight - kp -</th>
<th>tare - kp -</th>
<th>net weight - kp -</th>
<th>distance - m -</th>
<th>moment - mkp -</th>
</tr>
</thead>
<tbody>
<tr>
<td>front</td>
<td></td>
<td></td>
<td></td>
<td>a =</td>
<td></td>
</tr>
<tr>
<td>rear</td>
<td></td>
<td></td>
<td></td>
<td>b =</td>
<td></td>
</tr>
</tbody>
</table>

482.8 2.60 110.83

Name: Küppers

Edition: 15 - 6 - 1974
APPENDIX 2: Loading charts

Loading chart 1
Pilots' moments

Example

Example

Moment (mkp)
Küppers
Edition 1-6-74
APPENDIX 2: Loading charts

Loading chart 2
Fuel, baggage and parachute moments

Example

Fuel

Parachutes
front, aft

Baggage

Moment (m kp)

10
20
30
40
50
60
70

5 kp
20.1 m kp

1/4

3/4
4
5 Half
6
7
8
9
10

Fuel

1 US Gall Fuel Qty

10 Full

28 kp

38.36 m kp

Küppers

Edition 1-6-74
APPENDIX 2: Loading charts

Loading chart 3
C. G. envelope

Moment (lbf-1)

Weight (lb)

Küppers Edition 1-6-74
APPENDIX 3: Take-off distance

At maximum allowable weight of 680 kp (1500 lbs), no wind and dry grass runway the following ground runs and take off distances apply for different airfield altitudes and temperatures:

<table>
<thead>
<tr>
<th>Altitude ft over sealevel</th>
<th>Ground run in ft at temperatures of</th>
<th>Take-off distance over 50 ft in ft at temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-15°C</td>
<td>0°C</td>
</tr>
<tr>
<td>0</td>
<td>575</td>
<td>607</td>
</tr>
<tr>
<td>660</td>
<td>588</td>
<td>620</td>
</tr>
<tr>
<td>1320</td>
<td>600</td>
<td>634</td>
</tr>
<tr>
<td>1980</td>
<td>613</td>
<td>650</td>
</tr>
<tr>
<td>2640</td>
<td>626</td>
<td>666</td>
</tr>
</tbody>
</table>

These values are based on a good maintenance of the aircraft and a normal flight experience of the pilot.

For the aircraft equipped with the variable-pitch propeller HO-V 62 R following table is applicable (same conditions as before):

<table>
<thead>
<tr>
<th>Altitude ft over sealevel</th>
<th>Ground run in ft at temperatures of</th>
<th>Take-off distance over 50 ft obstacle in ft at temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-15°C</td>
<td>0°C</td>
</tr>
<tr>
<td>0</td>
<td>560</td>
<td>592</td>
</tr>
<tr>
<td>650</td>
<td>574</td>
<td>607</td>
</tr>
<tr>
<td>1300</td>
<td>587</td>
<td>622</td>
</tr>
<tr>
<td>2000</td>
<td>602</td>
<td>637</td>
</tr>
<tr>
<td>2600</td>
<td>617</td>
<td>652</td>
</tr>
</tbody>
</table>
APPENDIX 4: Variable-pitch propeller HO - V 62 R

1. General
The variable pitch propeller HO - V 62 R allows to fly with 3 different pitch-positions:

a) Take-off-position
b) Cruise-position
c) Feathered position

The switching is done by means of a lever, which is positioned in front of the panel in the front seat.

Take-off-or Cruise-position
Engine operating

Feathered Position
Engine stopped

The change "Take-off-position" into "Cruise-position" and "Cruise-position" to "Take-off-position" can be made while the engine is operating.

The change "Take-off-position" into "Feathered position", "Cruise-position" into "Feathered position" and vice-versa is only permitted with engine stopped.

2. Operating instructions
2.1 Starting the engine

Before starting the engine check if the propeller is in the take-off-position.

Take-off-position can be achieved by

a) switching the lever from left (feathered position) to right (take-off-position) or,

b) if the lever is already in the right position and possibly the cruise-position is engaged, by a short pull (≈ 2") at the actuator-lever.
2.2 Run up

Warming up the engine is done in the same manner as with fixed-pitch-propeller.

The run-up-check, with the brake set, should show 2800 rpm as minimum.

If the run-up shows significantly less than 2800 rpm, it is possible, that the propeller is still in the cruise-position.

Remedy: Switch to take-off-position (see 2.5)

2.3 Take-off and climb

For take-off and climb the take-off-position must be used.

2.4 Cruise-position

For switching into cruise-position reduce power setting to 2200 rpm and give a short pull (appr. 2") at the actuator lever. The loss in rpm with the same throttle position must be appr. 500 rpm.

2.5 Switching back to take-off-position

For the use of full climbing power and for the landing approach the propeller must be in take-off-position.

This is done according to 2.1 with engine stopped or with engine operating by reducing power setting to about 1000 rpm and then giving a short pull (appr. 2") at the actuator lever. The lever must be released slowly.

For checking Take-off-position apply full throttle. At normal approach speed engine-rpm should be at least 3100 rpm.
2.6 Feathered position

It is only permitted to switch into "feathered-position" with engine stopped.

Switching into "feathered-position" is done by pulling the lever fully from right to left.

3. Check

3.1 Daily, before first flight

Check fixture of propeller blades, no play at the tips. Angular play up to 1° is permitted. The whole mechanism must work easily. Shift bow, roller bearing, pressure plate and bowdencable are to be checked.

3.2 Periodical checks and maintenance